

Simplified Determination of Impedances of Chebyshev Transformers

If it is desired to match two different impedances by means of cascaded quarter-wavelength transformers, one may possibly refer to the tables of Young [1] or to the design curves of Jasik [2]. Because these works limit their information to less than seven sections, it is not possible to easily obtain the characteristic impedances for transformers which must operate over a large frequency band or which have very low reflection coefficients. The evaluation of the characteristic impedances for transformers having eight or more sections is very tedious. One can, however, evolve a relationship between the characteristic impedances of Chebyshev transformers and the excitation coefficients of Chebyshev arrays.

A design constant "C" has been defined by Jasik and is a measure of the difficulty of transformation. This design constant may be expressed as a function of the impedance transformation ratio and the maximum standing wave ratio, or as a function of the number of transformer sections and the ratio

Manuscript received March 28, 1966; revised April 20, 1966.

of the maximum to minimum operating frequencies. Knowing or assuming three of the above parameters, the fourth can be determined. Generally the unknown parameter is the number of transformer sections, and it can be evaluated from the expression involving the design constant C .

By comparing the transformer theory with antenna array theory it can be shown that the number of quarter-wavelength sections N corresponds to one less than the number of elements in an array. The design constant C corresponds to the voltage sidelobe level of an array.

Once the number of elements and the sidelobe level of the equivalent Chebyshev array are determined, then available tables [3] or graphs [4] may be used to determine the excitation coefficients. These excitation coefficients correspond to the a_m 's as derived by Cohn [5]. The ratio of impedances at each step is Z_{m+1}/Z_m .

A relationship between the characteristic impedances of each section of the transformer, the input and terminating impedances, and the a_m 's are given by the expression

$$\ln \frac{Z_{m+1}}{Z_m} = \frac{a_m \ln \frac{Z_{n+1}}{Z_1}}{\sum_1^n a_m}$$

where

$$n = N + 1.$$

Once the number of transformer sections and the design constant C have been calculated, the array which most closely satisfies these parameters may be chosen. The maximum VSWR and bandwidth may be recalculated from these data. In this manner the total time required to calculate the impedances of a multisection transformer can be minimized.

R. J. STEGEN
Canoga Electronics Corp.
Chatsworth, Calif.

REFERENCES

- [1] L. Young, "Table for cascaded homogeneous quarter-wave transformers," *IRE Trans. on Microwave Theory and Techniques*, vol. MTT-7, pp. 233-237, April 1959.
- [2] H. Jasik, *Antenna Engineering Handbook*. New York: McGraw-Hill, 1961, pp. 31-14.
- [3] L. B. Brown and G. A. Sharp, "Tschebyscheff antenna distribution, beamwidth, and gain tables," Naval Ordnance Rept. 4629, NOLC Rept. 383, Corona, Calif., 1958.
- [4] H. Jasik [2], pp. 2-20.
- [5] S. B. Cohn, "Optimum design of stepped transmission-line transformers," *IRE Trans. on Microwave Theory and Techniques*, vol. MTT-3, pp. 16-21, April 1955.

Contributors

Edward G. Cristal (S'58-M'61-SM'66) was born in St. Louis, Mo., on January 27, 1935. He received the B.S. and A.B. degrees in 1957, in electrical engineering and mathematics, respectively, and the M.S. degree in electrical engineering in 1958, all from Washington University, St. Louis. He received the Ph.D. degree in electrical engineering from the University of Wisconsin, Madison, in 1961.

Since 1961, when he joined the staff of the Electromagnetic Techniques Laboratory at Stanford Research Institute, Menlo Park, Calif., he has been engaged in research and development of microwave components.

Dr. Cristal is a member of the Scientific Research Society of America.

C. R. Haden (S'60-M'65) was born in Houston, Tex., on April 10, 1940. He received the B.S. degree in electrical engineering from Arlington State College, Arlington, Tex., in 1961, and the M.S. degree from the California Institute of Technology, Pasadena, in 1962. In the fall of 1962, he entered the University of Texas, Austin, where he was supported by a university fellowship. He received the Ph.D. degree in 1965.

During the summer of 1962, he was employed as an Electronics Engineer by Texas Instruments, Inc., Dallas. While at the University of Texas, he held a Graduate Teaching Assistantship in Electrical Engineering and a position as Research Engineer in the Electronic Materials Research Laboratory. Since June, 1965, he has been

Assistant Professor of Electrical Engineering at the University of Oklahoma, Norman. His current research is in the field of superconductivity and superconductive devices.

Dr. Haden is a member of Sigma Xi, Tau Beta Pi, Eta Kappa Nu, Phi Kappa Phi, and the American Physical Society. He is listed in *American Men of Science*.

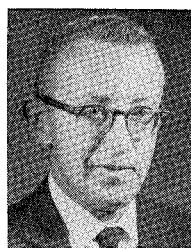
Robert D. Larrabee (S'52-M'58) was born in Flushing, N. Y., on November 29, 1931. He attended Bucknell University in Lewisburg, Pa., where he was awarded the B.S. degree in electrical engineering (June 1953) and the M.S. degree in mathematics (August 1953). He received the M.S. degree (without course specification) from the Massachusetts Institute of Technology,

Cambridge, in 1955, and the D.Sc. in physics in 1957. While at MIT, he was concerned with the spectral emissivity and optical properties of tungsten (doctoral presentation) and the characteristics of high vacuum ionization gauges.

He joined the research staff of RCA Laboratories in 1957, and since then has specialized in semiconductor research, especially on effects related to negative mass phenomena and, more recently, on studies of plasma effects in solids including the "Oscillistor," and microwave emission from indium antimonide.

Dr. Larrabee is a member of Sigma Xi, Tau Beta Pi, and Phi Mu Epsilon.

❖



David S. Levinson (S'61-M'62) was born in Chicago, Ill., on March 6, 1933. He received the B.S.E.E. degree from the University of Illinois, Urbana, in 1961, and pursued graduate studies at the Polytechnic Institute of

Brooklyn, Farmingdale, N. Y., until 1964.

Prior to and during his attendance at the University of Illinois, he worked as an electromechanical designer for the Magnavox Co., Urbana, Ill., and the Offner Electronics Corp., Chicago, Ill. From 1960 to 1961, he worked as a Technician in the University of Illinois Antenna Research Laboratory. Since 1961 he has been on the staff of the Applied Electronics Division of Airborne Instruments Laboratory, Deer Park, N. Y. He is currently a Project Engineer on programs for developing techniques and components for RFI measurements in waveguide systems. Other areas which his experience spans include low-noise cryogenic parametric amplifier systems, state-of-the-art high power filter design, and studies of properties of superconducting microwave filter structures.

Mr. Levinson has been an active member of the JTAC (Joint Technical Advisory Committee) Frequency Monitoring Study Group since 1964. He is a member of Eta Kappa Nu and Tau Beta Pi.

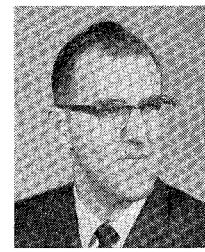
H. C. Okean (S'55-M'57) was born in New York, N. Y., on September 28, 1933. He received the B.A. and B.S. degrees in electrical engineering from Columbia University, New York, in 1955 and 1956, respectively, the M.E.E.

degree from New York University in 1960, and the Eng.Sc.D. degree from Columbia University in 1965.

He joined Bell Telephone Laboratories, Murray Hill, N. J., as a summer employee and worked as a Technical Assistant in the Electronic Power Development Department. He returned to Bell Laboratories in 1956 as a Member of the Technical Staff. From 1956 to 1960 he worked in the Military Systems Department and was engaged in the design and development of radar and missile guidance circuits. Since 1961 he has been a member of the Electron Device Laboratory at Bell Telephone Laboratories, involved in low noise microwave amplification research with particular emphasis on the exploratory development of tunnel diode amplifiers.

Dr. Okean is a member of Phi Beta Kappa, Tau Beta Pi, and Eta Kappa Nu.

❖



Irving Rubinstein (M'62) was born in Pinsk, Poland, on June 15, 1929. He received the B.S. degree in physics from Brooklyn College, Brooklyn, N. Y., in 1958, and is currently doing graduate work at Columbia University, New York, N. Y.

Since joining the Airborne Instruments Laboratory, Deer Park, N. Y., in 1964, he has been developing techniques for individual mode analysis and antenna prediction for multimode waveguide transmission systems. He is Project Engineer on the development of extremely low-loss narrowband tunable filters. He has developed tech-

niques for the design of high-*Q* helical-resonator filters and has been involved in the study and experimentation of properties of elliptic function filters and their adaptation to distributed constant networks. Prior to joining AIL, he had worked on the development of microwave components as well as microwave subsystem integration for ground and Doppler navigation radar. This included development of octave tunable waveguide and interdigital filters, single sideband modulators in stripline configuration, and low-noise single-sideband receivers. He has also participated in the development of lightweight K_u -band FM Doppler navigation systems as well as systems development of the AN/FPS-74 ground radar.

❖

T. D. Shockley, Jr. (M'56-SM'65) was born in Hayesville, La. on November 2, 1923. He received the B.S.E.E. and the M.S.E.E. degrees from Louisiana State University, Baton Rouge in 1950 and 1952, respectively, and the Ph.D. degree from The Georgia Institute of Technology, Atlanta, in 1963.

His industrial and research experience includes work in the fields of automatic flight control and radar systems at Chance Vought, Dallas, Tex., 1952; Convair, Ft. Worth, Tex., 1953 to 1956; The Engineer Experiment Station, Georgia Institute of Technology, 1956 to 1963; and The University of Alabama Research Institute, 1963 to 1964. He was an Instructor in the College of Engineering, Louisiana State University, from 1950 to 1953, an Assistant Professor of Electrical Engineering at Georgia Institute of Technology from 1958 to 1963, and an Associate Professor of Electrical Engineering at the University of Alabama, University, from 1963 to 1964. He is presently a Professor of Electrical Engineering at the University of Oklahoma, Norman.

Dr. Shockley is a member of Sigma Xi, Eta Kappa Nu, Sigma Pi Sigma, and Phi Mu Epsilon.